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Hantavirus, a rodent-borne zoonotic pathogen, has a global
distribution with 200,000 human infections diagnosed annually.
In recent decades, repeated outbreaks of hantavirus infections
have been reported in Eurasia and America. These outbreaks have
led to public concern and an interest in understanding the under-
lying biological mechanisms. Here, we propose a climate–animal–
Hantaan virus (HTNV) infection model to address this issue, using a
unique dataset spanning a 54-y period (1960–2013). This dataset
comes from Central China, a focal point for natural HTNV infection,
and includes both field surveillance and an epidemiological record.
We reveal that the 8-y cycle of HTNV outbreaks is driven by the
confluence of the cyclic dynamics of striped field mouse (Apodemus
agrarius) populations and climate variability, at both seasonal and
interannual cycles. Two climatic variables play key roles in the ecol-
ogy of the HTNV system: temperature and rainfall. These variables
account for the dynamics in the host reservoir system and markedly
affect both the rate of transmission and the potential risk of out-
breaks. Our results suggest that outbreaks of HTNV infection occur
only when climatic conditions are favorable for both rodent popula-
tion growth and virus transmission. These findings improve our
understanding of how climate drives the periodic reemergence
of zoonotic disease outbreaks over long timescales.

Hantaan virus | spillover to humans | wildlife reservoir | time-series data |
climate change

The seasonality and dynamic patterns of many infectious dis-
eases have attracted substantial research interest for a long

time, especially in the case of zoonotic diseases (1–3). Outbreaks are
driven by many factors, such as environmental conditions, a de-
crease in the immunity levels within the host population, increasing
natural population densities of the wildlife reservoir, and an in-
crease in reservoir–human interactions (4). Most previous studies
have focused on the seasonal variation of infectious diseases.
However, studies concerning the interannual variability of zoonotic
epidemics have been limited and highly controversial, chiefly be-
cause of the scarcity of long-term records on both human disease
cases and animal surveillance, and difficulties quantifying the role
of environmental forcing in animal–human transmission systems.
Here, we combine animal surveillance data with epidemiological
records of hemorrhagic fever with renal syndrome (HFRS) for the
past one-half century in the Weihe Plain, a natural Hantaan virus
(HTNV) infection focal point in Central China (Fig. 1) (5). We

examine whether the observed interannual cycles were driven by
external factors, such as climate and/or animal population dynamics.
Hantaviruses (genus Hantavirus, family Bunyaviridae) are

negative-sense single-stranded RNA viruses (6) that can cause
serious diseases in humans, and in certain outbreaks can lead to
mortality rates of 12% (HFRS) and 60% (hantavirus pulmonary
syndrome) (7). Collectively, hantaviruses account for an esti-
mated 200,000 clinical cases of disease annually on a global basis
(8). In mainland China, HFRS remains an important public
health issue because >1.5 million HFRS cases were reported in
this region alone during 1950–2010 (9). Human infection with
hantaviruses occurs through exposure to aerosolized rodent ex-
creta containing the pathogenic virus, when the environment for
transmission is suitable (10, 11). In contrast, infection between
rodents mainly results from aggressive encounters and biting (12,
13). Previously, it has been suggested that a link exists between
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outbreaks of hantavirus infection, the population dynamics of
the carrier rodents, and climate variability (14–16) in Asia (16–
19), Europe (20), and the Americas (21–24). However, outbreaks
of zoonotic hantaviruses do not simply track environmental
conditions or rodent dynamics (25, 26). A critical knowledge gap
still remains between key environmental drivers, population dy-
namics of animal reservoirs, and human infections that account
for the ecology and epidemiology of hantaviruses. The mecha-
nisms that underscore the interannual variability of the trans-
mission dynamics of hantaviruses at the animal–human interface
are poorly understood as well.
The overall aim of this study was to determine the role climate

forcing plays in the observed human–animal–HTNV dynamics,
spanning 54 y, through model fitting and simulation. Additionally,
the study aimed to evaluate the effect of climate forcing on both
the population change in the wildlife reservoir and the fluctuations
in HFRS outbreaks on both seasonal and interannual timescales.
We investigated the dynamics of HFRS epidemics through the
following three components: rodent population density, human
incidence of disease, and climate variability.

Results
There Is an 8-y Confluence of HFRS, Reservoir, and Climatic Conditions.
Concurrent changes between climate (especially amount of rain-
fall) and the incidence of disease within the animal reservoir and
human population were observed over a long period in the Weihe
Plain of Central China (Fig. 1 A and B). A strong positive cor-
relation was observed between the annual incidence of HFRS and
the capture rate of Apodemus agrarius (R = 0.77, P < 0.01) and
between the capture rate of A. agrarius and rainfall in the last year
(R = 0.40, P < 0.01). Wavelet analyses confirmed that all of the
time series studied in the Weihe Plain—including the number of
HFRS cases, capture rate of rodents, amount of annual rainfall,
and average winter temperature—showed interannual oscillations
of 8- to 10-y dominant periods between the 1960s and 2010s (Fig.
1C). The resulting periodicities seem likely to occur from the su-
perimposition of the El Niño–Southern Oscillation (ENSO),

which strongly affects local climate. It is worth noting that only
winter temperature showed an 8-y periodicity, whereas spring,
summer, autumn, and annual mean temperatures did not (SI
Appendix, Fig. S1). These findings suggest that the interannual
variation in the HFRS epidemics over long timescales may be
related to rodent population dynamics and climate variability.
Here, we report the interannual variability of climate, animal

reservoir, and HFRS outbreaks. Significant relationships were
found between these variables, and the potential impact of
ENSO on the 8-y pattern of epidemics was highlighted.

Reservoir Dynamics Are Associated with Climatic Conditions in Linear and
Nonlinear Ways. The optimal rodent model fitted with the general-
ized additive model (GAM) framework that best reflected the
population dynamics from 1980 to 2013 (Fig. 2A; R = 0.81, P <
0.01) was used to reconstruct the dynamics during 1960–1979. The
results showed the positive feedback of A. agrarius abundance (Fig.
2B), nonlinear positive effects of amount of annual rainfall
(Fig. 2C), and an intriguing nonlinear relationship between
winter temperature and the capture rate of A. agrarius (Fig. 2D).
The M-shaped curve revealed that extremely high/low winter
temperatures (>1 °C or below −1.5 °C) may significantly reduce
the population growth rate, thereby negatively affecting rodent
abundance. The pivotal point occurred at approximately −0.5 °C,
because a strong negative correlation between temperature and
rodent abundance was found at approximately −1.5 and −0.5 °C,
whereas a strong positive correlation between temperature and
rodent abundance was found at approximately −0.5 and 1 °C.
Our results indicate that when climatic conditions were in-
corporated into models of rodent population dynamics, winter
temperature had strong effects on the overwinter abundance
trajectory. Winter temperature, in combination with the previous
year’s rodent density and amount of rainfall, explained the
population dynamics in the following year.
Here, we show that population dynamics of A. agrarius may

respond to climatic conditions, including rainfall (which affects
food availability) and temperature (which affects winter survival),

Fig. 1. Time series of climatic, surveillance, and epidemiological data. (A) Map of the Weihe Plain in Central China (106–110 °E, 34–36 °N), showing the
weather station (rectangles) and sampling sites (circle; Hu County), croplands (green), artificial surfaces (gray), and areas overlapping the massif (orange).
Since 1980, field surveillance of rodent dynamics has been carried out monthly. (B) The annual time series of HFRS incidence (bars) between 1960 and 2013,
A. agrarius population density (red line), and the reconstructed population (Materials and Methods) density (dashed line) as provided by the optimal model.
Rainfall (green line) and the Nino3.4 index, which serves as a proxy for ENSO (blue bars represent La Niña and red bars represent El Niño), are also shown.
(C) Wavelet power spectra of the annual time series showing the periodicity of the incidence of HFRS, capture rate of striped field mouse, rainfall, and winter
temperature. Wavelet power spectra are depicted in C, Left, and global wavelet power spectra are in C, Right. In the wavelet power spectra, the dotted line
corresponds to the 5% significance level, and the bold line is known as the cone of influence. This line delimits the effect of the treatment of the boundaries.
The white lines materialize the maxima of the undulations of the wavelet power spectra, and the colors code for power values from blue (low values) to red
(high values). C, Right shows the mean spectrum (vertical solid black line) with its significant threshold value of 5% (dashed line).
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and infer the mode of how climate influences the interannual cycle
of reservoir dynamics.

When HFRS Epidemics Occur, They Are Seasonal and Associated with
Lagged Climatic Conditions.HFRS epidemics show strong seasonal
dynamics. Although the magnitude of outbreaks varies greatly
from year to year, the timing invariably coincides with the end of
the rainy season in autumn (Fig. 3A). Our analysis focused on
detecting seasonal changes in climate and evaluating whether
climate variability is a determinant of fluctuations in HFRS ep-
idemics. A strong negative correlation was observed between the
incidence of HFRS and summer temperature (R = −0.48, P <
0.01). In contrast, the incidence of HFRS was positively corre-
lated with summer rainfall levels (R = 0.35, P < 0.01) (Fig. 3 B
and C; the randomization test is shown in SI Appendix, Fig. S2).
Here, we demonstrate that powerful seasonal forcing of HFRS

transmission might be driven by specific environmental condi-
tions or contact rates between humans and the reservoir host.
Moreover, our results (SI Appendix, Fig. S3) clearly show that
local climate is responsible for the statistically significant asso-
ciation between HFRS epidemics and environmental variables.

HFRS Is Causally Predicted by a Combination of Direct and Indirect
Climatic and Reservoir Factors. The SEM analysis (Fig. 3D and SI
Appendix, Table S1 and Fig. S4) consistently supported the previous
analysis and indicated the following pathways: Rodent dynamics
have a direct positive effect on HFRS epidemics; rainfall has an
indirect positive effect via rodents; and temperature has a direct
negative effect on HFRS epidemics. Based on these findings, we
modeled HTNV spillover into human populations using monthly
HFRS cases (the average R2 train and R2 test of cross validation are
0.93 and 0.85, respectively; SI Appendix, Fig. S5). The resulting
model linking the rodent population system with the HFRS system is
nonlinear, incorporating temperature and rainfall as environmental
drivers (summarized in Fig. 4 and SI Appendix, Tables S2 and S3).
Concurrent changes in rodent population dynamics (Fig. 1B)

provide evidence for the forcing of HTNV transmission by
drivers at interannual timescales, and the additional effects of
environmental forcing on the transmission rate are contained in the
residuals. This finding allows us to quantify the role of environmental

factors in the dynamics of HFRS. In Fig. 4, the magnitude of epi-
demic peaks is temporally aligned with the fraction of transmission
rate. In times of high transmission, the incidence of HFRS would
be expected to increase. However, the magnitude of the response
is only high at a subset of these times. Most notably, the number of
HFRS cases was low for 2002–2010, despite climatic conditions
favorable toward a high transmission rate (Fig. 4B). This un-
expectedly low response was concurrent with a low rodent density.
These results emphasize that HFRS outbreaks occur only when
climatic conditions are favorable for both rodent population
growth and virus transmission.
Here, we interpret the mechanism of seasonal and interannual

variability of HFRS incidence, resulting from a combination of
direct and indirect climatic and reservoir factors (Figs. 1–3). Our
findings also highlight that the nonlinear dynamics of climate
forcing plays a role in seasonal transmission rates, but not when
operating on interannual timescales (SI Appendix, Fig. S6).

Discussion
Zoonotic systems are shaped by complex interactions between the
environment, wildlife cycle, and nonlinear spillover dynamics. The
quality of the Weihe Plain dataset provides us with a unique op-
portunity to generate climate-driven models for zoonotic disease
dynamics. We have provided a formal framework to understand
the transmission dynamics of hantaviruses, which could account
for the ecology of this zoonotic pathogen. Our study has shown the
close link between interannual cycles of climate–animal–HFRS

Fig. 2. The results of generalized additive models for A. agrarius. (A) Ro-
dent population dynamics. Shown are 1,000 rodent population runs of the
stochastic model in Eq. 1; the gray points show all artificial populations
simulated, the red points are the annually observed rodent populations, and
the black line indicates the result of the optimal model (R = 0.81). (B–D)
Partial effects of the annual density (B), last winter temperature (C), and
rainfall (D). Shaded areas are 95% confidence bands. Winter temperature is
calculated from December to January.

Fig. 3. Time series of monthly HFRS cases, summer rainfall, and the summer
temperatures in theWeihe Plain, during the past 54 y. (A) Monthly distribution
of HFRS cases. The number of HFRS cases (x axis, time in year; y axis, month
in year) ranges from a low value (in white) to a high value (in dark red).
(B) Summer rainfall (green line) and summer temperature (orange line).
(C) Scatterplot of summer temperature (negatively associated with HFRS cases,
R = −0.48, P < 0.01), summer rainfall (positively associated with HFRS cases, R =
0.35, P < 0.01), and HFRS cases (circle size is proportionate to the number of
HFRS cases). p (red) and q (blue) represent zoonotic outbreaks and nonout-
breaks with corresponding summer climate conditions, respectively. Summer
climate conditions are calculated from May to September. (D) Structure and
results from our structural equation models for climate-linked HFRS epidemics.
Values associated with arrows represent standardized path coefficients. The
dashed lines represent nonsignificant paths; −1, previous year; rainfall, total
annual rainfall; tem., mean annual temperature.
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outbreaks and reported on the climate-driven changes in reservoir
dynamics and HFRS outbreaks. Finally, by bringing together these
findings, we reveal the HTNV cycle in relation to key climate
variables and the overlapping interannual, seasonal, and zoonotic
cycles (Fig. 5).
Our study provides biological insight into the seasonality of

spillover transmission, wherein hantaviruses transmit from ani-
mals to humans through seasonal animal–human contact rates
(25), and the variation in encounters with environmental drivers.
In addition, our study offers a window into the fundamental
question of interannual variation in the dynamics of zoonotic
hantaviruses. Here, we show how climate drives the cyclic pat-
tern of HFRS outbreaks through the effect of both rainfall and
temperature variations on wildlife life cycles and seasonal spill-
over dynamics. Understanding the timing and potential causes of
epidemic cycles offers vital insights into how zoonotic system
operate and highlights general insights into the climate drivers
that influence the transmission of pathogens that are relevant to
public health issues. This finding also emphasizes the potential
risk of extrapolating dynamics for this zoonotic system without
first fully considering and understanding the nonlinear nature
of ecosystems.
The analysis reveals that large-scale wildlife reservoir dy-

namics are dominated by several interlinked factors (27, 28). The
resulting high-amplitude rodent population interacts with cli-
matic conditions and human activities to generate fluctuating
epidemics of HFRS. Rainfall plays a role in HFRS dynamics and
is positively linked with the risk of HTNV transmission. We as-
sumed that high primary productivity resulting from high levels
of precipitation could supply enough food for the growth of
juvenile and subadult rodents (29). Thus, a high abundance of
rodent hosts would amplify spillover through frequent contacts
between rodents within the reservoir and human beings. It
should be noted that the dynamics of zoonoses involve multiple
phases (30). Through long-term field studies, an integrated pic-
ture (27) is revealed of the role that climate variability plays in
the animal reservoir and infection risk to humans.
Temperature, the second climate variable of importance, is

statistically correlated with rodent population growth and HTNV
transmission rates. We have provided strong support for the
hypothesis that winter temperature exerts complex effects on the
rodent population growth rate (Fig. 2C). The relationship be-
tween winter temperature and rodent population growth rate

varied between −1.5 and 1 °C, and we infer that these ranges are
consistent with the temperature for snowmelt and formation of ice
in winter. Freeze–thaw events are most likely to occur, which may
affect food availability and the overwinter survival of rodents (31–
33). Previous studies have shown that density-dependent effects on
rodent growth can be altered by winter conditions (31). Increasing
winter temperatures provide a survival benefit to increasing rodent
populations. However, this increase might be associated with strong
intraspecific competition due to food or space limitation (34, 35),
resulting in a negative-feedback effect of density (Fig. 2B) (18, 31)
and nonlinearity and nonmonotonic dynamics. The influence of
density-dependent effect and winter temperature on rodent growth
were supported by our results (Fig. 2 B and C). Concerning the
negative impact of high summer temperature on the incidence of
HFRS, the mechanistic link is not yet well documented. We hy-
pothesize that high summer temperatures may constrain rodent
activity or reduce the frequency of direct and indirect contact be-
tween infected donors and susceptible rodents or contact between
rodents and human beings. Previous studies of rodent activity have
shown that an increase in both ambient and soil temperatures was
associated with a shortening of activity by earlier offsets of activity
(36). Rodents are not able to maintain high body temperatures
because this would result in heat prostration and eventual death.
Instead, wild rodents deal with ambient increases in temperature by
seeking shade or underground shelter (37). Additionally, high
summer temperatures and a dry environment can reduce the sur-
vival rate of hantaviruses (38, 39). This reduction, in turn, could
reduce potential infectious contact between rodents and eventually
reduce the prevalence of HTNV.
Our results indicate the complex impact of climate change on

important zoonoses, such as HFRS epidemics, due to both
nonlinear and complex interactions between climate, pathogen,
and host shape spillover dynamics. Global warming may affect
rodent winter survival through winter temperatures by a com-
plicated process, and it may also influence the magnitude of
HFRS outbreaks through summer climatic conditions (both
temperature and rainfall). Additionally, as global climate change
accelerates, it will become more difficult to predict the estimated
amount of annual rainfall accurately. In conclusion, climate
change could lead to different patterns of hantavirus trans-
mission and outbreaks among animals and human beings.
ENSO is considered to be a remote driver of interannual cli-

mate variability of local temperature and rainfall around the world
and could influence the population dynamics of small mammals
(40). Previous literature has shown an association between ENSO

Fig. 5. Schematic of the HTNV cycle in the host A. agrarius, depicting cli-
mate variables as drivers. The model formulation is given in Materials and
Methods. The solid line indicates available data, used in models linking the
ENSO (Nino3.4 index) with local climate (rainfall and temperature), rodent
population density (capture rate), and human HTNV infections. The multi-
year periodicity in winter temperature and annual rainfall may drive
A. agrarius population fluctuations, as shown in Fig. 2, together with seasonal
forcing on the transmission rate in Fig. 4, shaping interannual cycles of
climate–animal–HFRS outbreaks.

Fig. 4. Results of the nonlinear disease transmission model. (A) Temporal dy-
namics of observed vs. predicted HFRS cases. HFRS cases from rodent population
models derived from data from 1980 to 2003. Observations are in black, fitted
values are in red, and predictions for 2004–2013 are in blue. (B) The rodent
population density and climate-dependent transmission rate; the correspond-
ing shaded areas indicate the 95% credible intervals of the model fit.
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and zoonotic disease (41), especially the outbreak of hantavirus
pulmonary syndrome in the Four Corners region of the United
States (22, 24, 42). However, the pathways from global climate to
rodent host and the resulting pathogen transmission and spillover
through local climate is far from clear (4). In this study, we have
shown that ENSO could influence rodent population size and im-
pact interannual cycles of HFRS epidemics. Once the animal dy-
namics and climate conditions are taken into account, clear evidence
emerges for the role that multiyear climate variability plays in the
fluctuations of zoonotic diseases. La Niña-related rainfall may in-
crease the capture rate of A. agrarius and the risk of HTNV trans-
mission, whereas El Niño-related drought may limit rodent survival
and, in turn, reduce the risk of outbreak (Fig. 1B). Both El Niño and
La Niña events strongly affect zoonotic ecology and have significant
implications for public health (43, 44). Locally, drought and positive
rainfall anomalies occur during these ENSO years and are associated
with epidemic fluctuations.
The fit of the full model accounts for most of the variability in

the number of HFRS cases; however, the mechanism of HTNV
transmission within the wildlife reservoir is complex (26). In this
study, the dynamics of HTNV prevalence in rodents was estimated
by the incidence of HFRS and the population density of the ro-
dent. However, the relationship between the intrinsic dynamics
and extrinsic drivers of HTNV transmission at the human–animal
interface (e.g., the effect of summer climate condition on HFRS
outbreaks) requires further research.
In summary, this study lays down the necessary foundation to

predict future HFRS epidemics and to develop an early warning
system to enhance public health measures, especially in de-
veloping countries or areas undergoing social transformation.
The real-time monitoring of wildlife dynamics and climate sig-
natures we have outlined above are key in predicting potential
HFRS outbreaks.

Materials and Methods
Data Collection and Management. The HFRS dataset consists of monthly
clinical cases from 1960 to 2013 in theWehei Plain of Central China, one of the
largest plains in the country (Fig. 1A). HFRS cases were confirmed according
to standard diagnostic procedures set by the Ministry of Health of the
People’s Republic of China. Serum samples were sent to the Shaanxi Centre
for Disease Control and Prevention (CDC) for the detection of hantavirus-
reactive antibodies. Serological and genetic analyses confirmed that all HFRS
cases were caused by HTNV (25, 45). In our study, epidemiological data were
collected from the Shaanxi Provincial Notifiable Disease Surveillance System.

Surveillance of striped field mice (A. agrarius) abundance was conducted in
Hu County (108° E, 34° N, an area of 1,255 km2; shown in Fig. 1A) on a monthly
basis from 1980 to 2013, by using a standard approach (46). A density-of-
rodent population survey was conducted in fields at nine trapping sites
where rodents were likely to be present. The study followed a robust design
for three consecutive nights each month, where a minimum of 100 traps were
set each night and recovered in the morning (at least 300 trap-nights were set
each month; the mean number of trap-nights per month was 687, and the SD
was 543). Traps were placed outdoors (set as 4 parallel lines of 25 traps each
and spaced at 5-m intervals). Rodents were removed from the traps once
captured. The capture rate was calculated as the number of A. agrarius indi-
viduals captured divided by the number of trap-nights.

Since 1960, ∼150,000 HFRS cases were reported in the Weihe Plain area.
The average annual incidence of HFRS was ∼20 cases per 100,000 inhabi-
tants, with the highest incidence (>85 cases per 100,000 inhabitants) oc-
curring in 1984. The population density of striped field mouse (A. agrarius),
the primary reservoir of HTNV and the dominant species, was monitored and
recorded annually from 1980 to 2013. A total of 5,985 A. agrarius individuals
were captured over 283,620 trap-nights in the field, with a capture rate of
2 individuals per 100 trap-nights.

The daily record of climatic variables, including temperature and rainfall,
were obtained from local meteorological stations from 1960 to 2013 (Fig. 1A).
The ENSO index used in this study is the Nino3.4, which is calculated as the
difference between the monthly average sea-surface temperatures for the
areas within 5°N, 5°S, 120°W, and 170°W. Time series for the population
sizes of inhabitants were obtained from the Shaanxi Statistical Yearbook.

Climate Forcing on Wildlife Reservoir Dynamics.Wemodeled climate conditions as
a general model to describe the observed dynamics with a minimum number of
biological assumptions, based on a model proposed by Berryman (47, 48). To
measure the environmental forcing related to rodent population dynamics, we
created 1,000 populations. The initial (year 1960) capture rate of each artificial
population was set as a random value between 0 and 0.1 from a uniform dis-
tribution. Each artificial population was then assigned a set of parameter coef-
ficients estimated from a corresponding training subdataset, which contained
randomly sampled 80% of the full dataset. We applied the discrete-time model
to describe the rodent population fluctuations on an annual scale using the
GAMs framework with the mgcv package of R. The use of the GAM framework
permits estimation of the unknown function f for each climate variable (49). A
total of 1,000 time series of rodent populations were generated by multistep
prediction and were compared with the observed capture rates during 1980–
2013 to choose the optimal model based on R2. The model reads:

Ay+Δy =Ay · e^Ry [1]

Ry = ln
�
Ay+Δy

Ay

�
= f1

�
Rainfally

�
+ f2

�
Temperaturewinter

y

�
, [2]

where Ry is the population growth rates, and Ay is the capture rate of
A. agrarius in year y. Temperature and Rainfall represent the temperature in
the previous winter and annual rainfall in the previous year, respectively. Δy
is the yearly time step of the model, and the function f describes the effect
of rainfall or winter temperature on changes in rodent population size.

Structural Equation Model. The structural equation models (SEMs) were imple-
mented to estimate the structural correlation between variables. Yearly and
seasonal climate variables were considered to measure the direct and indirect
pathways underscoring HFRS epidemics. SEMs were implemented by using the R
package lavaan (50) with maximum-likelihood estimation procedures.

Climate Drives Zoonotic Outbreaks. We modeled the dynamics of HTNV
spillover into the human population using several potential explanatory
variables. HTNV spillover into the human population is considered to be
facilitated by the capture rate of A. agrarius and climate variables, both
representing key drivers of infection. We avoided explicit consideration of
the complex mechanism between virus prevalence in rodents and environ-
mental noise by representing HTNV prevalence dynamics in rodents through
a model for the force of human infections (number of HFRS cases). A GAM
with a Poisson distribution and a log link is used to model the data as:

It+1 = ðItðAt + τÞÞαβtSt . [3]

For the human component, It is the number of HFRS cases, and St represents
the number of individuals susceptible to infection (and hence disease) at
time t. The parameter α allows for nonlinearities in contact rates. At is the
capture rate of A. agrarius in month t. βt is the pathogen transmission rate
of hantavirus from rodent to human and is a key parameter that varies over
time. The parameter τ represents low, random abundances when no animals
were caught. We model this by forcing the rate of change with two extrinsic
drivers, namely, seasonality and climate covariates (here temperature and
rainfall): βt = βseasβclim. The transmission rate βt is governed by:

βclim,t = δ1Rainfallt−4 + δ2Rainfallt−2 + δ3Temperaturet−5
+ δ4Temperaturet−4 + «

[4]

βseas,t =
Xn
i=1

φiΔiMonthi [5]

logðIt+1Þ= α logðItÞ+ α logðAt + τÞ+ log
�
βseas,tβclim,t

�
+ logðStÞ, [6]

where Temperature and Rainfall are the monthly average temperature and ac-
cumulated rainfall, respectively, and time lags are determined by wavelet co-
herence analyses (SI Appendix, Fig. S7). δ is a vector of coefficients for the
independent variables. Seasonality is modeled nonparametrically, and φi is com-
posed of n = 12 distinct values, one for each month. Δ is a vector of dummy
variables of length 12. To assess the accuracy of themodel, we sampled 70%of the
dataset for training runs and used the remaining 30% to test the model. Model
fitting and convergence (51) were performed by Metropolis–Hastings Markov
chain Monte Carlo algorithm using the MATLAB (Version R2009b) toolbox DRAM
(Delayed Rejection AdaptiveMetropolis) (52). In model parameterization, the prior
distributions for the parameters were Gaussian, with amean of 0 and a variance of
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105. We ran the chain for 5 million iterations sampled every 1,000th step after a
burn-in of 1 million iterations.

Wavelet. Wavelet analyses were performed to investigate periodicity and
coherence of ecological time series (53). In this study, we adopted the Morlet
wavelet and beta surrogate significance tests (54, 55). To quantify the time-
evolving periodic components of a time series, the wavelet power spectrum
was used based on the wavelet transform Wx(f,t) of the time series x(t),
which can be regarded as a generalization of the Fourier transform (53, 55).
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